About: To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for distributed systems with shared resources, e.g., one case can block another case competing for the same machine, leading to inter-case dependencies in performance. However, due to a variety of reasons, real-life systems often record only a subset of all events taking place. For example, to reduce costs, the number of sensors is minimized or parts of the system are not connected. To understand and analyze the behavior of processes with shared resources, we aim to reconstruct bounds for timestamps of events that must have happened but were not recorded. We present a novel approach that decomposes system runs into token trajectories of cases and resources that may need to synchronize in the presence of many-to-many relationships. Such relationships occur, for example, in warehouses where packages for N incoming orders are not handled in a single delivery but in M different deliveries. We use linear programming over token trajectories to derive the timestamps of unobserved events in an efficient manner. This helps to complete the event logs and facilitates analysis. We focus on material handling systems like baggage handling systems in airports to illustrate our approach. However, the approach can be applied to other settings where recording is incomplete. The ideas have been implemented in ProM and were evaluated using both synthetic and real-life event logs.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for distributed systems with shared resources, e.g., one case can block another case competing for the same machine, leading to inter-case dependencies in performance. However, due to a variety of reasons, real-life systems often record only a subset of all events taking place. For example, to reduce costs, the number of sensors is minimized or parts of the system are not connected. To understand and analyze the behavior of processes with shared resources, we aim to reconstruct bounds for timestamps of events that must have happened but were not recorded. We present a novel approach that decomposes system runs into token trajectories of cases and resources that may need to synchronize in the presence of many-to-many relationships. Such relationships occur, for example, in warehouses where packages for N incoming orders are not handled in a single delivery but in M different deliveries. We use linear programming over token trajectories to derive the timestamps of unobserved events in an efficient manner. This helps to complete the event logs and facilitates analysis. We focus on material handling systems like baggage handling systems in airports to illustrate our approach. However, the approach can be applied to other settings where recording is incomplete. The ideas have been implemented in ProM and were evaluated using both synthetic and real-life event logs.
Subject
  • Communication
  • Decentralization
  • Basic concepts in set theory
  • Convex optimization
  • Geometric algorithms
  • Information technology management
  • Linear programming
  • P-complete problems
  • World Wide Web
  • Network architecture
  • Distributed computing
  • Material handling
  • Material-handling equipment
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software