AttributesValues
type
value
  • In severe acute respiratory syndrome coronavirus, the envelope heptad repeat 2 (HR2) plays a critical role in viral entry. Moreover, HR2 is both the target for novel antiviral therapies and, as an isolated peptide, presents a potential antiviral therapeutic. The structure of HR2, as determined by NMR spectroscopy in the presence of the co-solvent trifluoroethanol (TFE), is a trimer of parallel helices, whereas the structure of HR2, as determined by X-ray crystallography, is a tetramer of anti-parallel helices. In this work, we added a nitroxide spin label to the N-terminal region of HR2 and used paramagnetic relaxation enhancement to assess the orientation of the HR2 helices under different solution conditions. We find that the relaxation effects are consistent with an orientation corresponding to a trimer of parallel helices in both the presence and absence of TFE. This work suggests that the different orientation and oligomerization states observed by NMR and X-ray are due to the 11 additional residues present at the N-terminus of the NMR construct.
Subject
  • Virology
  • X-ray crystallography
  • Medical physics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software