About: Convenient, repeatable, large-scale molecular testing for SARS-CoV-2 would be a key weapon to help control the COVID-19 pandemic. Unfortunately, standard SARS-CoV-2 testing protocols are invasive and rely on numerous items that can be subject to supply chain bottlenecks, and as such are not suitable for frequent repeat testing. Specifically, personal protective equipment (PPE), nasopharyngeal (NP) swabs, the associated viral transport media (VTM), and kits for RNA isolation and purification have all been in short supply at various times during the COVID-19 pandemic. Moreover, SARS-CoV-2 is spread through droplets and aerosols transmitted through person-to-person contact, and thus saliva may be a relevant medium for diagnosing SARS-CoV-2 infection status. Here we describe a saliva-based testing method that bypasses the need for RNA isolation/purification. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method, and initial studies also show excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites, thus allowing for high-throughput, rapid, and repeat testing of large populations. Graphical Abstract   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Convenient, repeatable, large-scale molecular testing for SARS-CoV-2 would be a key weapon to help control the COVID-19 pandemic. Unfortunately, standard SARS-CoV-2 testing protocols are invasive and rely on numerous items that can be subject to supply chain bottlenecks, and as such are not suitable for frequent repeat testing. Specifically, personal protective equipment (PPE), nasopharyngeal (NP) swabs, the associated viral transport media (VTM), and kits for RNA isolation and purification have all been in short supply at various times during the COVID-19 pandemic. Moreover, SARS-CoV-2 is spread through droplets and aerosols transmitted through person-to-person contact, and thus saliva may be a relevant medium for diagnosing SARS-CoV-2 infection status. Here we describe a saliva-based testing method that bypasses the need for RNA isolation/purification. In experiments with inactivated SARS-CoV-2 virus spiked into saliva, this method has a limit of detection of 500-1000 viral particles per mL, rivalling the standard NP swab method, and initial studies also show excellent performance with 100 clinical samples. This saliva-based process is operationally simple, utilizes readily available materials, and can be easily implemented by existing testing sites, thus allowing for high-throughput, rapid, and repeat testing of large populations. Graphical Abstract
subject
  • Virology
  • Physical chemistry
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software