About: The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
subject
  • Virology
  • HIV/AIDS
  • Animal anatomy
  • Causes of death
  • Discovery and invention controversies
  • IARC Group 2B carcinogens
  • Lentiviruses
  • Sexually transmitted diseases and infections
  • Ashkenazi Jews
  • 1983 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software