value
| - Fundamental step of an adaptive immune response to pathogen or vaccine is the binding of short peptides (also called epitopes) to major histocompatibility complex (MHC) molecules. The various prediction algorithms are being used to capture the MHC peptide binding preference, allowing the rapid scan of entire pathogen proteomes for peptide likely to bind MHC, saving the cost, effort, and time. However, the number of known binders/non-binders (BNB) to a specific MHC molecule is limited in many cases, which still poses a computational challenge for prediction. The training data should be adequate to predict BNB using any machine learning approach. In this study, variable learning rate has been demonstrated for training artificial neural network and predicting BNB for small datasets. The approach can be used for large datasets as well. The dataset for different MHC class I alleles for SARS Corona virus (Tor2 Replicase polyprotein 1ab) has been used for training and prediction of BNB. A total of 90 datasets (nine different MHC class I alleles with tenfold cross validation) have been retrieved from IEDB database for BNB. For fixed learning rate approach, the best value of AROC is 0.65, and in most of the cases it is 0.5, which shows the poor predictions. In case of variable learning rate, of the 90 datasets the value of AROC for 76 datasets is between 0.806 and 1.0 and for 7 datasets the value is between 0.7 and 0.8 and for rest of 7 datasets it is between 0.5 and 0.7, which indicates very good performance in most of the cases.
|