AttributesValues
type
value
  • As opposed to most sociological fields, data are available in good quality for human epidemiology, describing the interaction between individuals being susceptible to or infected by a disease. Mathematically, the modelling of such systems is done on the level of stochastic master equations, giving likelihood functions for real live data. We show in a case study of meningococcal disease, that the observed large fluctuations of outbreaks of disease among the human population can be explained by the theory of accidental pathogens, leading the system towards a critical state, characterized by power laws in outbreak distributions. In order to make the extremely difficult parameter estimation close to a critical state with absorbing boundary possible, we investigate new algorithms for simulation of the disease dynamics on the basis of winner takes all strategies, and combine them with previously developed parameter estimation schemes.
subject
  • Bacterial diseases
  • Epidemiology
  • Sociology
  • Exponentials
  • Estimation theory
  • Mathematical and quantitative methods (economics)
  • Signal processing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software