AttributesValues
type
value
  • Abstract N-terminal and C-terminal heptad repeats (NHR and CHR) of HIV type 1 (HIV-1) glycoprotein 41 are known to be regions directly related to cell fusion during virus attack, and their complex core constructs a coiled-coil structure in the fusion process. In our recent studies, MT-4/17-3-6, a strain of HIV-1, showed the strong resistance to peptide fusion inhibitors compared with other strains such as MT-4/LAI, L-2 and CU98-26, and had a distinctive L565M mutation in the central region of NHR. To investigate the relationship between the mutation and resistance, we performed a molecular modeling of the coiled-coil of MT-4/17-3-6 by using energy minimization and molecular dynamics simulation based on the MT-4/LAI X-ray structure. As a result, we found that H564 in the NHR was pushed to the outer side by this mutation, and three hydrogen bond bridges of Y638-H564-E560-Q650 could be formed, enclosing the coiled-coil. The binding of peptide inhibitors would be disturbed by the structural stabilization of these bridges in MT-4/17-3-6.
Subject
  • Virology
  • Entry inhibitors
  • Gaseous signaling molecules
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software