About: Neurotropic coronavirus induces an acute encephalomyelitis accompanied by focal areas of demyelination distributed randomly along the spinal column. The initial areas of demyelination increase only slightly after the control of infection. These circumscribed focal lesions are characterized by axonal sparing, myelin ingestion by macrophage/microglia, and glial scars associated with hypertrophic astrocytes, which proliferate at the lesion border. Accelerated virus control in mice lacking the anti‐inflammatory cytokine IL‐10 was associated with limited initial demyelination, but low viral mRNA persistence similar to WT mice and declining antiviral cellular immunity. Nevertheless, lesions exhibited sustained expansion providing a model of dysregulated white matter injury temporally remote from the acute CNS insult. Expanding lesions in the absence of IL‐10 are characterized by sustained microglial activation and partial loss of macrophage/microglia exhibiting an acquired deactivation phenotype. Furthermore, IL‐10 deficiency impaired astrocyte organization into mesh like structures at the lesion borders, but did not prevent astrocyte hypertrophy. The formation of discrete foci of demyelination in IL‐10 sufficient mice correlated with IL‐10 receptor expression exclusively on astrocytes in areas of demyelination suggesting a critical role for IL‐10 signaling to astrocytes in limiting expansion of initial areas of white matter damage. GLIA 2015;63:2106–2120   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Neurotropic coronavirus induces an acute encephalomyelitis accompanied by focal areas of demyelination distributed randomly along the spinal column. The initial areas of demyelination increase only slightly after the control of infection. These circumscribed focal lesions are characterized by axonal sparing, myelin ingestion by macrophage/microglia, and glial scars associated with hypertrophic astrocytes, which proliferate at the lesion border. Accelerated virus control in mice lacking the anti‐inflammatory cytokine IL‐10 was associated with limited initial demyelination, but low viral mRNA persistence similar to WT mice and declining antiviral cellular immunity. Nevertheless, lesions exhibited sustained expansion providing a model of dysregulated white matter injury temporally remote from the acute CNS insult. Expanding lesions in the absence of IL‐10 are characterized by sustained microglial activation and partial loss of macrophage/microglia exhibiting an acquired deactivation phenotype. Furthermore, IL‐10 deficiency impaired astrocyte organization into mesh like structures at the lesion borders, but did not prevent astrocyte hypertrophy. The formation of discrete foci of demyelination in IL‐10 sufficient mice correlated with IL‐10 receptor expression exclusively on astrocytes in areas of demyelination suggesting a critical role for IL‐10 signaling to astrocytes in limiting expansion of initial areas of white matter damage. GLIA 2015;63:2106–2120
Subject
  • Virology
  • Central nervous system
  • Glial cells
  • Anti-inflammatory agents
  • Exercise physiology
  • Human cells
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software