AttributesValues
type
value
  • Abstract- The early detection of SARS-CoV-2, the causative agent of (COVID-19) is now a critical task for the clinical practitioners. The COVID-19 spread is announced as pandemic outbreak between people worldwide by WHO since 11/ March/ 2020. In this consequence, it is top critical priority to become aware of the infected people so that prevention procedures can be processed to minimize the COVID-19 spread and to begin early medical health care of those infected persons. In this paper, the deep studying based totally methodology is usually recommended for the detection of COVID-19 infected patients using X-ray images. The help vector gadget classifies the corona affected X-ray images from others through usage of the deep features. The technique is useful for the clinical practitioners for early detection of COVID-19 infected patients. The suggested system of multi-level thresholding plus SVM presented high accuracy in classification of the infected lung with Covid-19. All images were of the same size and stored in JPEG format with 512 * 512 pixels. The average sensitivity, specificity, and accuracy of the lung classification using the proposed model results were 95.76%, 99.7%, and 97.48%, respectively.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • Medical physics
  • COVID-19
  • Occupational safety and health
  • Display technology
  • Digital geometry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software