About: Background: COVID-19 is bringing scenes of sci-fi movies into real life, and it seems to be far from over. Infected individuals exhibit variable severity, with no relation between the number of cases and mortality, suggesting the involvement of the populational genetic constitution and previous cross-reactive immune contacts in the individuals' disease outcome. Methods: A clustering approach was conducted to investigate the involvement of human MHC alleles with individuals' outcomes. HLA frequencies from affected countries were used to fuel the Hierarchical Clusterization Analysis. The formed groups were compared regarding their death rates. To prospect the T cell targets in SARS-CoV-2, and by consequence, the epitopes that are conferring cross-protection in the current pandemic, we modeled 3D structures of HLA-A*02:01 presenting immunogenic epitopes from SAR-CoV-1, recovered from Immune Epitope Database. These pMHC structures were also compared with models containing the corresponding SARS-CoV-2 epitope, with alphacoronavirus sequences, and with a panel of immunogenic pMHC structures contained in CrossTope. Findings: The combined use of HLA-B*07, HLA-B*44, HLA-DRB1*03, and HLADRB1*04 allowed the clustering of affected countries presenting similar death rates, based only on their allele frequencies. SARS-CoV HLA-A*02:01 epitopes were structurally investigated. It reveals molecular conservation between SARS-CoV-1 and SARS-CoV-2 peptides, enabling the use of formerly SARS-CoV-1 experimental epitopes to inspect actual targets that are conferring cross-protection. Alpha-CoVs and, impressively, viruses involved in human infections share fingerprints of immunogenicity with SARS-CoV peptides. Interpretation: Wide-scale HLA genotyping in COVID-19 patients shall improve prognosis prediction. Structural identification of previous triggers paves the way for herd immunity examination and wide spectrum vaccine development. Funding: This work was supported by the National Council for Scientific and Technological Development (CNPq) and National Council for the Improvement of Higher Education (CAPES) for their support   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: COVID-19 is bringing scenes of sci-fi movies into real life, and it seems to be far from over. Infected individuals exhibit variable severity, with no relation between the number of cases and mortality, suggesting the involvement of the populational genetic constitution and previous cross-reactive immune contacts in the individuals' disease outcome. Methods: A clustering approach was conducted to investigate the involvement of human MHC alleles with individuals' outcomes. HLA frequencies from affected countries were used to fuel the Hierarchical Clusterization Analysis. The formed groups were compared regarding their death rates. To prospect the T cell targets in SARS-CoV-2, and by consequence, the epitopes that are conferring cross-protection in the current pandemic, we modeled 3D structures of HLA-A*02:01 presenting immunogenic epitopes from SAR-CoV-1, recovered from Immune Epitope Database. These pMHC structures were also compared with models containing the corresponding SARS-CoV-2 epitope, with alphacoronavirus sequences, and with a panel of immunogenic pMHC structures contained in CrossTope. Findings: The combined use of HLA-B*07, HLA-B*44, HLA-DRB1*03, and HLADRB1*04 allowed the clustering of affected countries presenting similar death rates, based only on their allele frequencies. SARS-CoV HLA-A*02:01 epitopes were structurally investigated. It reveals molecular conservation between SARS-CoV-1 and SARS-CoV-2 peptides, enabling the use of formerly SARS-CoV-1 experimental epitopes to inspect actual targets that are conferring cross-protection. Alpha-CoVs and, impressively, viruses involved in human infections share fingerprints of immunogenicity with SARS-CoV peptides. Interpretation: Wide-scale HLA genotyping in COVID-19 patients shall improve prognosis prediction. Structural identification of previous triggers paves the way for herd immunity examination and wide spectrum vaccine development. Funding: This work was supported by the National Council for Scientific and Technological Development (CNPq) and National Council for the Improvement of Higher Education (CAPES) for their support
Subject
  • Zoonoses
  • Immune system
  • Viral respiratory tract infections
  • Population genetics
  • COVID-19
  • Chemical reactions
  • Evolutionary biology
  • Medical terminology
  • Occupational safety and health
  • Statistical genetics
  • Film genres
  • Science fiction films
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software