About: A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in a clade within the family Neisseriaceae in the order Nessieriales of the Betaproteobacteria 99.3% similar to Pseudogulbenkiania subflava. Similar to P. sublfava, predominant whole cell fatty acids were identified as 16:17c, 42.4%, and 16:0, 34.1%. Whole cell difference spectra of the Fe(II) reduced minus nitrate oxidized cyctochrome content revealed a possible role of c-type cytochromes in nitrate-dependent Fe(II) oxidation. Strain 2002 was unable to oxidize aqueous or solid-phase Mn(II) with nitrate as the electron acceptor. In addition to lithotrophic growth with Fe(II), strain 2002 could alternatively grow heterotrophically with long-chain fatty acids, simple organic acids, carbohydrates, yeast extract, or casamino acids. Nitrate, nitrite, nitrous oxide, and oxygen also served as terminal electron acceptors with acetate as the electron donor.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in a clade within the family Neisseriaceae in the order Nessieriales of the Betaproteobacteria 99.3% similar to Pseudogulbenkiania subflava. Similar to P. sublfava, predominant whole cell fatty acids were identified as 16:17c, 42.4%, and 16:0, 34.1%. Whole cell difference spectra of the Fe(II) reduced minus nitrate oxidized cyctochrome content revealed a possible role of c-type cytochromes in nitrate-dependent Fe(II) oxidation. Strain 2002 was unable to oxidize aqueous or solid-phase Mn(II) with nitrate as the electron acceptor. In addition to lithotrophic growth with Fe(II), strain 2002 could alternatively grow heterotrophically with long-chain fatty acids, simple organic acids, carbohydrates, yeast extract, or casamino acids. Nitrate, nitrite, nitrous oxide, and oxygen also served as terminal electron acceptors with acetate as the electron donor.
Subject
  • Curing agents
  • Building materials
  • Cubic minerals
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software