AttributesValues
type
value
  • The scientific community is rapidly generating protein sequence information, but only a fraction of these proteins can be experimentally characterized. While promising deep learning approaches for protein prediction tasks have emerged, they have computational limitations or are designed to solve a specific task. We present a Transformer neural network that pre-trains task-agnostic sequence representations. This model is fine-tuned to solve two different protein prediction tasks: protein family classification and protein interaction prediction. Our method is comparable to existing state-of-the art approaches for protein family classification, while being much more general than other architectures. Further, our method outperforms all other approaches for protein interaction prediction. These results offer a promising framework for fine-tuning the pre-trained sequence representations for other protein prediction tasks.
Subject
  • Proteomics
  • Proteins
  • Classification algorithms
  • Molecular biology
  • Patent law
  • Philosophy of religion
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software