About: Sound principles of statistical inference dictate that uncertainty shapes learning. In this work, we revisit the question of learning in volatile environments, in which both the first and second-order statistics of observations dynamically evolve over time. We propose a new model, the volatile Kalman filter (VKF), which is based on a tractable state-space model of uncertainty and extends the Kalman filter algorithm to volatile environments. The proposed model is algorithmically simple and encompasses the Kalman filter as a special case. Specifically, in addition to the error-correcting rule of Kalman filter for learning observations, the VKF learns volatility according to a second error-correcting rule. These dual updates echo and contextualize classical psychological models of learning, in particular hybrid accounts of Pearce-Hall and Rescorla-Wagner. At the computational level, compared with existing models, the VKF gives up some flexibility in the generative model to enable a more faithful approximation to exact inference. When fit to empirical data, the VKF is better behaved than alternatives and better captures human choice data in two independent datasets of probabilistic learning tasks. The proposed model provides a coherent account of learning in stable or volatile environments and has implications for decision neuroscience research.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Sound principles of statistical inference dictate that uncertainty shapes learning. In this work, we revisit the question of learning in volatile environments, in which both the first and second-order statistics of observations dynamically evolve over time. We propose a new model, the volatile Kalman filter (VKF), which is based on a tractable state-space model of uncertainty and extends the Kalman filter algorithm to volatile environments. The proposed model is algorithmically simple and encompasses the Kalman filter as a special case. Specifically, in addition to the error-correcting rule of Kalman filter for learning observations, the VKF learns volatility according to a second error-correcting rule. These dual updates echo and contextualize classical psychological models of learning, in particular hybrid accounts of Pearce-Hall and Rescorla-Wagner. At the computational level, compared with existing models, the VKF gives up some flexibility in the generative model to enable a more faithful approximation to exact inference. When fit to empirical data, the VKF is better behaved than alternatives and better captures human choice data in two independent datasets of probabilistic learning tasks. The proposed model provides a coherent account of learning in stable or volatile environments and has implications for decision neuroscience research.
Subject
  • Stochastic differential equations
  • Evidence
  • Hungarian inventions
  • Markov models
  • Film and video technology
  • Control theory
  • Signal estimation
  • History of science
  • Linear filters
  • Robot control
  • Nonlinear filters
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software