AttributesValues
type
value
  • Nosocomial infection raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare and hospital-mediated outbreaks of influenza and SARS. We simulate stochastic SIR dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed networks have hierarchical and modular structure. We show that healthcare workers, particularly medical doctors, are main vectors of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, as suggested by previous model studies. [The abstract of the manuscript has more information.]
Subject
  • Moment (mathematics)
  • Higher education
  • Higher doctorates
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software