AttributesValues
type
value
  • This paper deals with the query-biased summarization task. Conventional non-neural network-based approaches have achieved better performance by primarily including the words overlapping between the source and the query in the summary. However, recurrent neural network (RNN)-based approaches do not explicitly model this phenomenon. Therefore, we model an RNN-based query-biased summarizer to primarily include the overlapping words in the summary, using a copying mechanism. Experimental results, in terms of both automatic evaluation with ROUGE and manual evaluation, show that the strategy to include the overlapping words also works well for neural query-biased summarizers.
Subject
  • Senescence
  • Artificial intelligence
  • Artificial neural networks
  • Econometrics
  • Information, knowledge, and uncertainty
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software