AttributesValues
type
value
  • In applications, QBF solvers are expected to not only decide whether a given formula is true or false but also return a solution in the form of a strategy. Determining whether strategies can be efficiently extracted from proof traces generated by QBF solvers is a fundamental research task. Most resolution-based proof systems are known to implicitly support polynomial-time strategy extraction through a simulation of the evaluation game associated with an input formula, but this approach introduces large constant factors and results in unwieldy circuit representations. In this work, we present an explicit polynomial-time strategy extraction algorithm for the [Formula: see text] proof system. This system is used by expansion-based solvers that implement counterexample-guided abstraction refinement (CEGAR), currently one of the most effective QBF solving paradigms. Our argument relies on a Curry-Howard style correspondence between strategies and [Formula: see text] derivations, where each strategy realizes an invariant obtained from an annotated clause derived in the proof system.
subject
  • Algorithms
  • Computational complexity theory
  • Analysis of algorithms
  • Computational resources
  • Logic in computer science
  • Boolean algebra
  • Satisfiability problems
  • PSPACE-complete problems
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software