About: Neural networks are frequently applied to medical data. We describe how complex and imbalanced data can be modelled with simple but accurate neural networks that are transparent to the user. In the case of a data set on cervical cancer with 753 observations excluding, missing values, and 32 covariates, with a prevalence of 73 cases (9.69%), we explain how model selection can be applied to the Multi-Layer Perceptron (MLP) by deriving a representation using a General Additive Neural Network. The model achieves an AUROC of 0.621 CI [0.519,0.721] for predicting positive diagnosis with Schiller’s test. This is comparable with the performance obtained by a deep learning network with an AUROC of 0.667 [1]. Instead of using all covariates, the Partial Response Network (PRN) involves just 2 variables, namely the number of years on Hormonal Contraceptives and the number of years using IUD, in a fully explained model. This is consistent with an additive non-linear statistical approach, the Sparse Additive Model [2] which estimates non-linear components in a logistic regression classifier using the backfitting algorithm applied to an ANOVA functional expansion. This paper shows how the PRN, applied to a challenging classification task, can provide insights into the influential variables, in this case correlated with incidence of cervical cancer, so reducing the number of unnecessary variables to be collected for screening. It does so by exploiting the efficiency of sparse statistical models to select features from an ANOVA decomposition of the MLP, in the process deriving a fully interpretable model.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Neural networks are frequently applied to medical data. We describe how complex and imbalanced data can be modelled with simple but accurate neural networks that are transparent to the user. In the case of a data set on cervical cancer with 753 observations excluding, missing values, and 32 covariates, with a prevalence of 73 cases (9.69%), we explain how model selection can be applied to the Multi-Layer Perceptron (MLP) by deriving a representation using a General Additive Neural Network. The model achieves an AUROC of 0.621 CI [0.519,0.721] for predicting positive diagnosis with Schiller’s test. This is comparable with the performance obtained by a deep learning network with an AUROC of 0.667 [1]. Instead of using all covariates, the Partial Response Network (PRN) involves just 2 variables, namely the number of years on Hormonal Contraceptives and the number of years using IUD, in a fully explained model. This is consistent with an additive non-linear statistical approach, the Sparse Additive Model [2] which estimates non-linear components in a logistic regression classifier using the backfitting algorithm applied to an ANOVA functional expansion. This paper shows how the PRN, applied to a challenging classification task, can provide insights into the influential variables, in this case correlated with incidence of cervical cancer, so reducing the number of unnecessary variables to be collected for screening. It does so by exploiting the efficiency of sparse statistical models to select features from an ANOVA decomposition of the MLP, in the process deriving a fully interpretable model.
Subject
  • Networks
  • Neural networks
  • Emerging technologies
  • Artificial intelligence
  • Classification algorithms
  • Regression variable selection
  • Artificial neural networks
  • Computational neuroscience
  • Network architecture
  • Econometrics
  • Information, knowledge, and uncertainty
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software