About: Early identification of pneumonia is essential in patients with acute febrile respiratory illness (FRI). We evaluated the performance and added value of a commercial deep learning (DL) algorithm in detecting pneumonia on chest radiographs (CRs) of patients visiting the emergency department (ED) with acute FRI. This single-centre, retrospective study included 377 consecutive patients who visited the ED and the resulting 387 CRs in August 2018–January 2019. The performance of a DL algorithm in detection of pneumonia on CRs was evaluated based on area under the receiver operating characteristics (AUROC) curves, sensitivity, specificity, negative predictive values (NPVs), and positive predictive values (PPVs). Three ED physicians independently reviewed CRs with observer performance test to detect pneumonia, which was re-evaluated with the algorithm eight weeks later. AUROC, sensitivity, and specificity measurements were compared between “DL algorithm” vs. “physicians-only” and between “physicians-only” vs. “physicians aided with the algorithm”. Among 377 patients, 83 (22.0%) had pneumonia. AUROC, sensitivity, specificity, PPV, and NPV of the algorithm for detection of pneumonia on CRs were 0.861, 58.3%, 94.4%, 74.2%, and 89.1%, respectively. For the detection of ‘visible pneumonia on CR’ (60 CRs from 59 patients), AUROC, sensitivity, specificity, PPV, and NPV were 0.940, 81.7%, 94.4%, 74.2%, and 96.3%, respectively. In the observer performance test, the algorithm performed better than the physicians for pneumonia (AUROC, 0.861 vs. 0.788, p = 0.017; specificity, 94.4% vs. 88.7%, p < 0.0001) and visible pneumonia (AUROC, 0.940 vs. 0.871, p = 0.007; sensitivity, 81.7% vs. 73.9%, p = 0.034; specificity, 94.4% vs. 88.7%, p < 0.0001). Detection of pneumonia (sensitivity, 82.2% vs. 53.2%, p = 0.008; specificity, 98.1% vs. 88.7%; p < 0.0001) and ‘visible pneumonia’ (sensitivity, 82.2% vs. 73.9%, p = 0.014; specificity, 98.1% vs. 88.7%, p < 0.0001) significantly improved when the algorithm was used by the physicians. Mean reading time for the physicians decreased from 165 to 101 min with the assistance of the algorithm. Thus, the DL algorithm showed a better diagnosis of pneumonia, particularly visible pneumonia on CR, and improved diagnosis by ED physicians in patients with acute FRI.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Early identification of pneumonia is essential in patients with acute febrile respiratory illness (FRI). We evaluated the performance and added value of a commercial deep learning (DL) algorithm in detecting pneumonia on chest radiographs (CRs) of patients visiting the emergency department (ED) with acute FRI. This single-centre, retrospective study included 377 consecutive patients who visited the ED and the resulting 387 CRs in August 2018–January 2019. The performance of a DL algorithm in detection of pneumonia on CRs was evaluated based on area under the receiver operating characteristics (AUROC) curves, sensitivity, specificity, negative predictive values (NPVs), and positive predictive values (PPVs). Three ED physicians independently reviewed CRs with observer performance test to detect pneumonia, which was re-evaluated with the algorithm eight weeks later. AUROC, sensitivity, and specificity measurements were compared between “DL algorithm” vs. “physicians-only” and between “physicians-only” vs. “physicians aided with the algorithm”. Among 377 patients, 83 (22.0%) had pneumonia. AUROC, sensitivity, specificity, PPV, and NPV of the algorithm for detection of pneumonia on CRs were 0.861, 58.3%, 94.4%, 74.2%, and 89.1%, respectively. For the detection of ‘visible pneumonia on CR’ (60 CRs from 59 patients), AUROC, sensitivity, specificity, PPV, and NPV were 0.940, 81.7%, 94.4%, 74.2%, and 96.3%, respectively. In the observer performance test, the algorithm performed better than the physicians for pneumonia (AUROC, 0.861 vs. 0.788, p = 0.017; specificity, 94.4% vs. 88.7%, p < 0.0001) and visible pneumonia (AUROC, 0.940 vs. 0.871, p = 0.007; sensitivity, 81.7% vs. 73.9%, p = 0.034; specificity, 94.4% vs. 88.7%, p < 0.0001). Detection of pneumonia (sensitivity, 82.2% vs. 53.2%, p = 0.008; specificity, 98.1% vs. 88.7%; p < 0.0001) and ‘visible pneumonia’ (sensitivity, 82.2% vs. 73.9%, p = 0.014; specificity, 98.1% vs. 88.7%, p < 0.0001) significantly improved when the algorithm was used by the physicians. Mean reading time for the physicians decreased from 165 to 101 min with the assistance of the algorithm. Thus, the DL algorithm showed a better diagnosis of pneumonia, particularly visible pneumonia on CR, and improved diagnosis by ED physicians in patients with acute FRI.
subject
  • Pneumonia
  • Algorithms
  • Biostatistics
  • Infectious diseases
  • Data mining
  • Clinical research
  • Emergency medicine
  • RTT(full)
  • RTTEM
  • Respiratory and cardiovascular disorders specific to the perinatal period
  • Mathematical logic
  • Theoretical computer science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software