About: PURPOSE: Polymeric mesh implantation has become the golden standard in hernia repair, which nowadays is one of the most frequently performed surgeries in the world. However, many biocompatibility issues remain to be a concern for hernioplasty, with chronic pain being the most notable post-operative complication. Oxidative stress appears to be a major factor in the development of those complications. Lack of material inertness in vivo and oxidative environment formed by inflammatory cells result in both mesh deterioration and slowed healing process. In a pilot in vivo study, we prepared and characterized polypropylene hernia meshes with vitamin E (α-tocopherol)-a potent antioxidant. The results of that study supported the use of vitamin E as potential coating to alleviate post-surgical inflammation, but the pilot nature of the study yielded limited statistical data. The purpose of this study was to verify the observed trend of the pilot study statistically. METHODS: In this work, we conducted a 5-animal experiment where we have implanted vitamin E-coated and uncoated control meshes into the abdominal walls of rabbits. Histology of the mesh-adjacent tissues and electron microscopy of the explanted mesh surface were conducted to characterize host tissue response to the implanted meshes. RESULTS: As expected, modified meshes exhibited reduced foreign body reaction, as evidenced by histological scores for fatty infiltrates, macrophages, neovascularization, and collagen organization, as well as by the surface deterioration of the meshes. CONCLUSION: In conclusion, results indicate that vitamin E coating reduces inflammatory response following hernioplasty and protects mesh material from oxidative deterioration.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • PURPOSE: Polymeric mesh implantation has become the golden standard in hernia repair, which nowadays is one of the most frequently performed surgeries in the world. However, many biocompatibility issues remain to be a concern for hernioplasty, with chronic pain being the most notable post-operative complication. Oxidative stress appears to be a major factor in the development of those complications. Lack of material inertness in vivo and oxidative environment formed by inflammatory cells result in both mesh deterioration and slowed healing process. In a pilot in vivo study, we prepared and characterized polypropylene hernia meshes with vitamin E (α-tocopherol)-a potent antioxidant. The results of that study supported the use of vitamin E as potential coating to alleviate post-surgical inflammation, but the pilot nature of the study yielded limited statistical data. The purpose of this study was to verify the observed trend of the pilot study statistically. METHODS: In this work, we conducted a 5-animal experiment where we have implanted vitamin E-coated and uncoated control meshes into the abdominal walls of rabbits. Histology of the mesh-adjacent tissues and electron microscopy of the explanted mesh surface were conducted to characterize host tissue response to the implanted meshes. RESULTS: As expected, modified meshes exhibited reduced foreign body reaction, as evidenced by histological scores for fatty infiltrates, macrophages, neovascularization, and collagen organization, as well as by the surface deterioration of the meshes. CONCLUSION: In conclusion, results indicate that vitamin E coating reduces inflammatory response following hernioplasty and protects mesh material from oxidative deterioration.
Subject
  • Electron microscopy
  • Senescence
  • Essential nutrients
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software