AttributesValues
type
value
  • In the Anthropocene context, changes in climate, land use and biodiversity are considered among the most important anthropogenic factors affecting parasites-host interaction and wildlife zoonotic diseases emergence. Transmission of vector borne pathogens are particularly sensitive to these changes due to the complexity of their cycle, where the transmission of a microparasite depends on the interaction between its vector, usually a macroparasite, and its reservoir host, in many cases represented by a wildlife vertebrate. The scope of this paper focuses on the effect of some major, fast-occurring anthropogenic changes on the vectorial capacity for tick and mosquito borne pathogens. Specifically, we review and present the latest advances regarding two emerging vector-borne viruses in Europe: Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV). In both cases, variation in vector to host ratio is critical in determining the intensity of pathogen transmission and consequently infection hazard for humans. Forecasting vector-borne disease hazard under the global change scenarios is particularly challenging, requiring long term studies based on a multidisciplinary approach in a One-Health framework.
Subject
  • Virology
  • Europe
  • Epidemiology
  • Parasitology
  • Conservation biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software