AttributesValues
type
value
  • SARS-CoV-2 virus, the causative agent of Covid-19, has fired up a global pandemic. The virus interacts with the human receptor angiotensin-converting enzyme 2 (ACE2) for invasion via receptor binding domain (RBD) on its spike protein. To provide a deeper understanding of this interaction, we performed microsecond simulations of the RBD-ACE2 complex for SARS- CoV-2 and compared it with the closely related SARS-CoV discovered in 2003. We show residues in the RBD of SARS-CoV-2 that were mutated from SARS-CoV, collectively help make RBD anchor much stronger to the N-terminal part of ACE2 than the corresponding residues on RBD of SARS-CoV. This would result in reduced dissociation rate of SARS-CoV-2 from human recep- tor protein compared to SARS-CoV. This phenomenon was consistently observed in simulations beyond 500 ns and was reproducible across different force fields. Altogether, our study shed light on the key residues and their dynamics at the virus spike and human receptor binding interface and advance our knowledge for the development of diagnostics and therapeutics to combat the pandemic efficiently.
Subject
  • Virology
  • Zoonoses
  • COVID-19
  • Membrane biology
  • Orders of magnitude (time)
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software