AttributesValues
type
value
  • Abstract Using the complete genome sequences of 19 coronavirus genomes, we analyzed the codon usage bias, dinucleotide relative abundance and cytosine deamination in coronavirus genomes. Of the eight codons that contain CpG, six were markedly suppressed. The mean NNU/NNC ratio of the six amino acids using either NNC or NNU as codon is 3.262, suggesting cytosine deamination. Among the 16 dinucleotides, CpG was most markedly suppressed (mean relative abundance 0.509). No correlation was observed between CpG abundance and mean NNU/NNC ratio. Among the 19 coronaviruses, CoV-HKU1 showed the most extreme codon usage bias and extremely high NNU/NNC ratio of 8.835. Cytosine deamination and selection of CpG suppressed clones by the immune system are the two major independent biochemical and biological selective forces that shape codon usage bias in coronavirus genomes. The underlying mechanism for the extreme codon usage bias, cytosine deamination and G+C content in CoV-HKU1 warrants further studies.
Subject
  • Genetics
  • Gene expression
  • Nobel Prize
  • Molecular biology
  • Molecular genetics
  • Swedish science and technology awards
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software