AttributesValues
type
value
  • Abstract The microstructure of a material governs mechanical properties such as strength and toughness. Various finite element analysis (FEA) software packages are used to perform structural analyses such as predicting the flow of strain or strain fields in a microstructure. Engineers frequently operate these software packages to evaluate mechanical behavior and predict failure. Even though these FEA software packages provide highly accurate analyses, they are computationally intensive, taking a significant amount of time to produce a solution. The time required by the FEA software packages to achieve accurate results largely depends on microstructure details and mesh resolution, thus providing a trade-off between fidelity and computation time. This research proposes the use of Deep Learning algorithms to achieve a significant reduction in the time required to predict high-accuracy strain fields in a two-dimensional microstructure with defects. This work presents a foundation for developing deep neural networks to conduct structural analyses, thus reducing the exclusive use of computationally demanding FEA software and augmenting the analytical capabilities of scientists and engineers.
Subject
  • Structural analysis
  • Software
  • Decision-making
  • Continuum mechanics
  • Materials science
  • Mathematical and quantitative methods (economics)
  • Mathematical concepts
  • Partial differential equations
  • Computer science
  • Supercomputers
  • Numerical differential equations
  • Finite element method
  • Metallurgy
  • Computational electromagnetics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software