About: Interunit dispersion problems have been studied previously mainly through on-site measurements, wind tunnel tests, and CFD simulations. In this study, a scaled outdoor experiment was conducted to examine the interunit dispersion characteristics in consecutive two-dimensional street canyons. Tracer gas ([Formula: see text]) was continuously released to simulate the pollutant dispersion routes between the rooms in street canyons. The wind velocity, wind direction, air temperature, and tracer gas concentrations were monitored simultaneously. Two important parameters, the air exchange rate and reentry ratio, were analyzed to reveal the ventilation performance and interunit dispersion of the rooms in the street canyons. Based on the real-time weather conditions, it was found that the ventilation performance of the source room varied according to the room location. The air exchange rate distribution of the leeward-side room was more stable than that of the windward side. The tracer gas was mainly transported in the vortex direction inside the street canyon, and the highest reentry ratio was observed at the room nearest to the source room along the transportation route. In addition, under real weather conditions, the rooms in the street canyon have a high probability of experiencing a high reentry ratio based on the maximum reentry ratio of each room. This study provides authentic airflow and pollutant dispersion information in the street canyons in an urban environment. The dataset of this experiment can be used to validate further numerical simulations.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Interunit dispersion problems have been studied previously mainly through on-site measurements, wind tunnel tests, and CFD simulations. In this study, a scaled outdoor experiment was conducted to examine the interunit dispersion characteristics in consecutive two-dimensional street canyons. Tracer gas ([Formula: see text]) was continuously released to simulate the pollutant dispersion routes between the rooms in street canyons. The wind velocity, wind direction, air temperature, and tracer gas concentrations were monitored simultaneously. Two important parameters, the air exchange rate and reentry ratio, were analyzed to reveal the ventilation performance and interunit dispersion of the rooms in the street canyons. Based on the real-time weather conditions, it was found that the ventilation performance of the source room varied according to the room location. The air exchange rate distribution of the leeward-side room was more stable than that of the windward side. The tracer gas was mainly transported in the vortex direction inside the street canyon, and the highest reentry ratio was observed at the room nearest to the source room along the transportation route. In addition, under real weather conditions, the rooms in the street canyon have a high probability of experiencing a high reentry ratio based on the maximum reentry ratio of each room. This study provides authentic airflow and pollutant dispersion information in the street canyons in an urban environment. The dataset of this experiment can be used to validate further numerical simulations.
Subject
  • Computational fluid dynamics
  • Flight phases
  • Units of temporal rate
  • Atmospheric entry
  • Spaceflight technologies
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software