About: Recent advancements and applications in artificial intelligence (AI) and machine learning (ML) have highlighted the need for explainable, interpretable, and actionable AI-ML. Most work is focused on explaining deep artificial neural networks, e.g., visual and image captioning. In recent work, we established a set of indices and processes for explainable AI (XAI) relative to information fusion. While informative, the result is information overload and domain expertise is required to understand the results. Herein, we explore the extraction of a reduced set of higher-level linguistic summaries to inform and improve communication with non-fusion experts. Our contribution is a proposed structure of a fusion summary and method to extract this information from a given set of indices. In order to demonstrate the usefulness of the proposed methodology, we provide a case study for using the fuzzy integral to combine a heterogeneous set of deep learners in remote sensing for object detection and land cover classification. This case study shows the potential of our approach to inform users about important trends and anomalies in the models, data and fusion results. This information is critical with respect to transparency, trustworthiness, and identifying limitations of fusion techniques, which may motivate future research and innovation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Recent advancements and applications in artificial intelligence (AI) and machine learning (ML) have highlighted the need for explainable, interpretable, and actionable AI-ML. Most work is focused on explaining deep artificial neural networks, e.g., visual and image captioning. In recent work, we established a set of indices and processes for explainable AI (XAI) relative to information fusion. While informative, the result is information overload and domain expertise is required to understand the results. Herein, we explore the extraction of a reduced set of higher-level linguistic summaries to inform and improve communication with non-fusion experts. Our contribution is a proposed structure of a fusion summary and method to extract this information from a given set of indices. In order to demonstrate the usefulness of the proposed methodology, we provide a case study for using the fuzzy integral to combine a heterogeneous set of deep learners in remote sensing for object detection and land cover classification. This case study shows the potential of our approach to inform users about important trends and anomalies in the models, data and fusion results. This information is critical with respect to transparency, trustworthiness, and identifying limitations of fusion techniques, which may motivate future research and innovation.
Subject
  • Learning
  • Machine learning
  • Artificial intelligence
  • Cybernetics
  • Evaluation methods
  • Technology forecasting
  • Analytic philosophy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software