AttributesValues
type
value
  • To obtain accurate predictive models in medicine, it is necessary to use complete relevant information about the patient. We propose an approach for extracting temporary expressions from unlabeled natural language texts. This approach can be used for the first analysis of the corpus, for data labeling as the first stage, or for obtaining linguistic constructions that can be used for a rule-based approach to retrieve information. Our method includes the sequential use of several machine learning and natural language processing methods: classification of sentences, the transformation of word bag frequencies, clustering of sentences with time expressions, classification of new data into clusters and construction of sentence profiles using feature importances. With this method, we derive the list of the most frequent time expressions and extract events and/or time events for 9801 sentences of anamnesis in Russian. The proposed approach is independent of the corpus language and can be used for other tasks, for example, extracting an experiencer of a disease.
Subject
  • Machine learning
  • Artificial intelligence
  • Computational fields of study
  • Information retrieval
  • Natural language processing
  • Computational linguistics
  • Speech recognition
  • Extinct languages
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software