About: This paper formulates a Model Predictive Control (MPC) policy to mitigate the COVID-19 contagion in Brazil, designed as optimal On-Off social isolation strategy. The proposed optimization algorithm is able to determine the time and duration of social distancing policies in the country. The achieved results are based on data from the period between March and May of 2020, regarding the cumulative number of infections and deaths due to the SARS-CoV-2 virus. This dataset is assumably largely sub-notified due to the absence of mass testing in Brazil. Thus, the MPC is based on a SIR model which is identified using an uncertainty-weighted Least-Squares criterion. Furthermore, this model includes an additional dynamic variable that mimics the response of the population to the social distancing policies determined by the government, which affect the COVID-19 transmission rate. The proposed control method is set within a mixed-logical formalism, since the decision variable is forcefully binary (existence or the absence of social distance policy). A dwell-time constraint is included to avoid too frequent shifts between these two inputs. The achieved simulation results illustrate how such optimal control method would operate in practice, pointing out that no social distancing should be relaxed before mid August 2020. If relaxations are necessary, they should not be performed before this date and should be in small periods, no longer than 25 days. This paradigm would proceed roughly until January/2021. The results also indicate a possible second peak of infections, which has a forecast to the beginning of October. This peak can be reduced if the periods of days with relaxed social isolation measures are shortened.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • This paper formulates a Model Predictive Control (MPC) policy to mitigate the COVID-19 contagion in Brazil, designed as optimal On-Off social isolation strategy. The proposed optimization algorithm is able to determine the time and duration of social distancing policies in the country. The achieved results are based on data from the period between March and May of 2020, regarding the cumulative number of infections and deaths due to the SARS-CoV-2 virus. This dataset is assumably largely sub-notified due to the absence of mass testing in Brazil. Thus, the MPC is based on a SIR model which is identified using an uncertainty-weighted Least-Squares criterion. Furthermore, this model includes an additional dynamic variable that mimics the response of the population to the social distancing policies determined by the government, which affect the COVID-19 transmission rate. The proposed control method is set within a mixed-logical formalism, since the decision variable is forcefully binary (existence or the absence of social distance policy). A dwell-time constraint is included to avoid too frequent shifts between these two inputs. The achieved simulation results illustrate how such optimal control method would operate in practice, pointing out that no social distancing should be relaxed before mid August 2020. If relaxations are necessary, they should not be performed before this date and should be in small periods, no longer than 25 days. This paradigm would proceed roughly until January/2021. The results also indicate a possible second peak of infections, which has a forecast to the beginning of October. This peak can be reduced if the periods of days with relaxed social isolation measures are shortened.
Subject
  • Brazil
  • Epidemiology
  • BRICS nations
  • Member states of Mercosur
  • Control theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software