About: Underreporting of COVID-19 cases and deaths is a hindrance to correctly modeling and monitoring the pandemic. This is primarily due to limited testing, lack of reporting infrastructure and a large number of asymptomatic infections. In addition, diagnostic tests (RT-PCR tests for detecting current infection) and serological antibody tests for IgG (to assess past infections) are imperfect. In particular, the diagnostic tests have a high false negative rate. Epidemiologic models with a latent compartment for unascertained infections like the Susceptible-Exposed-Infected-Removed (SEIR) models can provide predictions for unreported cases and deaths under certain assumptions. Typically, the number of unascertained cases is unobserved and thus we cannot validate these estimates for a real study except for simulation studies. Population-based seroprevalence studies can provide a rough estimate of the total number of infections and help us check epidemiologic model projections. In this paper, we develop a method to account for high false negative rates in RT-PCR in an extension to the classic SEIR model. We apply this method to Delhi, the national capital region of India, with a population of 19.8 million and a COVID-19 hotspot of the country, obtaining estimates of underreporting factor for cases at 34-53 times and that for deaths at 8-13 times. Based on a recently released serological survey for Delhi with an estimated 22.86% seroprevalence, we compute adjusted estimates of the true number of infections reported by the survey (after accounting for misclassification of the antibody test results) which is largely consistent with the model outputs, yielding an underreporting factor for cases from 30-42. Together with the model and the serosurvey, this implies approximately 96-98% cases in Delhi remained unreported and whereas only 109,140 cases were reported on July 10, the true number of infections varied somewhere between 4.4-4.6 million across different estimates. While repeated serological monitoring is resource intensive, model-based adjustments, run with the most up to date data, can provide a viable option to keep track of the unreported cases and deaths and gauge the true extent of transmission of this insidious virus.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Underreporting of COVID-19 cases and deaths is a hindrance to correctly modeling and monitoring the pandemic. This is primarily due to limited testing, lack of reporting infrastructure and a large number of asymptomatic infections. In addition, diagnostic tests (RT-PCR tests for detecting current infection) and serological antibody tests for IgG (to assess past infections) are imperfect. In particular, the diagnostic tests have a high false negative rate. Epidemiologic models with a latent compartment for unascertained infections like the Susceptible-Exposed-Infected-Removed (SEIR) models can provide predictions for unreported cases and deaths under certain assumptions. Typically, the number of unascertained cases is unobserved and thus we cannot validate these estimates for a real study except for simulation studies. Population-based seroprevalence studies can provide a rough estimate of the total number of infections and help us check epidemiologic model projections. In this paper, we develop a method to account for high false negative rates in RT-PCR in an extension to the classic SEIR model. We apply this method to Delhi, the national capital region of India, with a population of 19.8 million and a COVID-19 hotspot of the country, obtaining estimates of underreporting factor for cases at 34-53 times and that for deaths at 8-13 times. Based on a recently released serological survey for Delhi with an estimated 22.86% seroprevalence, we compute adjusted estimates of the true number of infections reported by the survey (after accounting for misclassification of the antibody test results) which is largely consistent with the model outputs, yielding an underreporting factor for cases from 30-42. Together with the model and the serosurvey, this implies approximately 96-98% cases in Delhi remained unreported and whereas only 109,140 cases were reported on July 10, the true number of infections varied somewhere between 4.4-4.6 million across different estimates. While repeated serological monitoring is resource intensive, model-based adjustments, run with the most up to date data, can provide a viable option to keep track of the unreported cases and deaths and gauge the true extent of transmission of this insidious virus.
Subject
  • Virology
  • Serology
  • Epidemiology
  • COVID-19
  • Medical tests
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software