About: While the concept of “single component–single target” in drug discovery seems to have come to an end, “Multi-component–multi-target” is considered to be another promising way out in this field. The Traditional Chinese Medicine (TCM), which has thousands of years’ clinical application among China and other Asian countries, is the pioneer of the “Multi-component–multi-target” and network pharmacology. Hundreds of different components in a TCM prescription can cure the diseases or relieve the patients by modulating the network of potential therapeutic targets. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. Without thorough investigation of its potential targets and side effects, TCM is not able to generate large-scale medicinal benefits, especially in the days when scientific reductionism and quantification are dominant. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This article firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in details along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • While the concept of “single component–single target” in drug discovery seems to have come to an end, “Multi-component–multi-target” is considered to be another promising way out in this field. The Traditional Chinese Medicine (TCM), which has thousands of years’ clinical application among China and other Asian countries, is the pioneer of the “Multi-component–multi-target” and network pharmacology. Hundreds of different components in a TCM prescription can cure the diseases or relieve the patients by modulating the network of potential therapeutic targets. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. Without thorough investigation of its potential targets and side effects, TCM is not able to generate large-scale medicinal benefits, especially in the days when scientific reductionism and quantification are dominant. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This article firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in details along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.
Subject
  • Plant physiology
  • Traditional Chinese medicine
  • Pseudoscience
  • Alternative medicine
  • Pharmacy in China
  • Traditional medicine
  • Atheist states
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software