About: PURPOSE: The aim of this work was to investigate the genome of SARS-CoV, MERS-CoV, and SARS-CoV-2 by the paradigm of chaos theory and fractal geometry. Coronavirus is the agent that causes the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and emergent infections such as the present pandemic of COVID-19. Understanding its genome pattern is important for developing new and faster ways of testing for identifying the genome of the virus and also for better understanding of its origin and evolution. METHODS: For that, it was calculated the alpha coefficient by detrended fluctuation analysis (DFA) for the sequences of these genomes converted to binary numbers in order to determine if it is a chaotic or a random series of data. Also, it applied the random walking for obtaining a fractal map of the whole genome and calculated the fractal dimension (FD) by box-counting of this map by two different software. RESULTS: With this, it was found that the alpha coefficient of the first SARS viruses was > 0.5, indicating that the series is chaotic or fractal, and has a persistent long-range memory or self-similarity along its sequence. This is not the case for MERS virus, which showed to have a completely random sequence (α < 0.5). For the fractal dimension, SARS viruses presented a FD around 1.5, and for MERS the fractal dimension decreases (FD < 1.5). CONCLUSION: The images generated by random walking of the entire RNA genome are by itself a fractal signature of the virus, which may be applied for studying its origin and for faster diagnostic of COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • PURPOSE: The aim of this work was to investigate the genome of SARS-CoV, MERS-CoV, and SARS-CoV-2 by the paradigm of chaos theory and fractal geometry. Coronavirus is the agent that causes the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and emergent infections such as the present pandemic of COVID-19. Understanding its genome pattern is important for developing new and faster ways of testing for identifying the genome of the virus and also for better understanding of its origin and evolution. METHODS: For that, it was calculated the alpha coefficient by detrended fluctuation analysis (DFA) for the sequences of these genomes converted to binary numbers in order to determine if it is a chaotic or a random series of data. Also, it applied the random walking for obtaining a fractal map of the whole genome and calculated the fractal dimension (FD) by box-counting of this map by two different software. RESULTS: With this, it was found that the alpha coefficient of the first SARS viruses was > 0.5, indicating that the series is chaotic or fractal, and has a persistent long-range memory or self-similarity along its sequence. This is not the case for MERS virus, which showed to have a completely random sequence (α < 0.5). For the fractal dimension, SARS viruses presented a FD around 1.5, and for MERS the fractal dimension decreases (FD < 1.5). CONCLUSION: The images generated by random walking of the entire RNA genome are by itself a fractal signature of the virus, which may be applied for studying its origin and for faster diagnostic of COVID-19.
subject
  • Virology
  • Viral respiratory tract infections
  • Chaos theory
  • Fractals
  • Gottfried Leibniz
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software