About: BACKGROUND: Nucleolar localization sequences (NoLSs) are short targeting sequences responsible for the localization of proteins to the nucleolus. Given the large number of proteins experimentally detected in the nucleolus and the central role of this subnuclear compartment in the cell, NoLSs are likely to be important regulatory elements controlling cellular traffic. Although many proteins have been reported to contain NoLSs, the systematic characterization of this group of targeting motifs has only recently been carried out. RESULTS: Here, we describe NoD, a web server and a command line program that predicts the presence of NoLSs in proteins. Using the web server, users can submit protein sequences through the NoD input form and are provided with a graphical output of the NoLS score as a function of protein position. While the web server is most convenient for making prediction for just a few proteins, the command line version of NoD can return predictions for complete proteomes. NoD is based on our recently described human-trained artificial neural network predictor. Through stringent independent testing of the predictor using available experimentally validated NoLS-containing eukaryotic and viral proteins, the NoD sensitivity and positive predictive value were estimated to be 71% and 79% respectively. CONCLUSIONS: NoD is the first tool to provide predictions of nucleolar localization sequences in diverse eukaryotes and viruses. NoD can be run interactively online at http://www.compbio.dundee.ac.uk/nod or downloaded to use locally.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Nucleolar localization sequences (NoLSs) are short targeting sequences responsible for the localization of proteins to the nucleolus. Given the large number of proteins experimentally detected in the nucleolus and the central role of this subnuclear compartment in the cell, NoLSs are likely to be important regulatory elements controlling cellular traffic. Although many proteins have been reported to contain NoLSs, the systematic characterization of this group of targeting motifs has only recently been carried out. RESULTS: Here, we describe NoD, a web server and a command line program that predicts the presence of NoLSs in proteins. Using the web server, users can submit protein sequences through the NoD input form and are provided with a graphical output of the NoLS score as a function of protein position. While the web server is most convenient for making prediction for just a few proteins, the command line version of NoD can return predictions for complete proteomes. NoD is based on our recently described human-trained artificial neural network predictor. Through stringent independent testing of the predictor using available experimentally validated NoLS-containing eukaryotic and viral proteins, the NoD sensitivity and positive predictive value were estimated to be 71% and 79% respectively. CONCLUSIONS: NoD is the first tool to provide predictions of nucleolar localization sequences in diverse eukaryotes and viruses. NoD can be run interactively online at http://www.compbio.dundee.ac.uk/nod or downloaded to use locally.
Subject
  • Virology
  • Gene expression
  • Viral proteins
  • Software architecture
  • Servers (computing)
  • Web development
  • Web server software
  • Website management
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software