About: Infectious bursal disease virus (IBDV) is the agent of an immune-depressive disease affecting the poultry industry worldwide. Infection of IBDV leads to expression of five mature virus-encoded proteins. Proteolytic processing of the virus-encoded polyprotein generates VP3 which coats the inner surface of the IBDV capsid. In this report, we describe the characterization of the RNA-binding activity of VP3. For these studies, the VP3 coding region was fused to a histidine tag and expressed in insect cells using a recombinant baculovirus. The histidine-tagged VP3 was affinity-purified and used to study its ability to bind RNA molecules using three complementary methods: (i) Northwestern blotting; (ii) binding of VP3 protein-RNA complexes to nitrocellulose membranes; and (iii) electrophoretic mobility shift assays. The results demonstrated that VP3 efficiently bound ssRNA and dsRNA. Under the experimental conditions used in this study, the formation of VP3-RNA complexes did not depend upon the presence of specific RNA sequences. A series of histidine-tagged VP3 deletion mutants spanning the whole VP3 coding region were generated. The use of these mutants revealed that the VP3 RNA-binding domain layed in a highly conserved 69 aa stretch close to the N-terminus of the protein.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Infectious bursal disease virus (IBDV) is the agent of an immune-depressive disease affecting the poultry industry worldwide. Infection of IBDV leads to expression of five mature virus-encoded proteins. Proteolytic processing of the virus-encoded polyprotein generates VP3 which coats the inner surface of the IBDV capsid. In this report, we describe the characterization of the RNA-binding activity of VP3. For these studies, the VP3 coding region was fused to a histidine tag and expressed in insect cells using a recombinant baculovirus. The histidine-tagged VP3 was affinity-purified and used to study its ability to bind RNA molecules using three complementary methods: (i) Northwestern blotting; (ii) binding of VP3 protein-RNA complexes to nitrocellulose membranes; and (iii) electrophoretic mobility shift assays. The results demonstrated that VP3 efficiently bound ssRNA and dsRNA. Under the experimental conditions used in this study, the formation of VP3-RNA complexes did not depend upon the presence of specific RNA sequences. A series of histidine-tagged VP3 deletion mutants spanning the whole VP3 coding region were generated. The use of these mutants revealed that the VP3 RNA-binding domain layed in a highly conserved 69 aa stretch close to the N-terminus of the protein.
subject
  • Virology
  • Molecular biology
  • Video codecs
  • Formerly proprietary software
  • Diptera pests and diseases
  • Bird common names
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software