Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Identifying highly influential travellers for spreading disease on a public transport system
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Identifying highly influential travellers for spreading disease on a public transport system
Creator
Gardner, Lauren
Jurdak, Raja
Liebig, Jessica
Shoghri, Ahmad
Kanhere, Salil
source
ArXiv
abstract
The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spread widely and quickly. Investigating the movement patterns and the physical encounters of individuals on public transit systems is thus critical to understand the drivers of infectious disease outbreaks. For instance previous work has explored the impact of recurring patterns inherent in human mobility on disease spread, but has not considered other dimensions such as the distance travelled or the number of encounters. Here, we consider multiple mobility dimensions simultaneously to uncover critical information for the design of effective intervention strategies. We use one month of citywide smart card travel data collected in Sydney, Australia to classify bus passengers along three dimensions, namely the degree of exploration, the distance travelled and the number of encounters. Additionally, we simulate disease spread on the transport network and trace the infection paths. We investigate in detail the transmissions between the classified groups while varying the infection probability and the suspension time of pathogens. Our results show that characterizing individuals along multiple dimensions simultaneously uncovers a complex infection interplay between the different groups of passengers, that would remain hidden when considering only a single dimension. We also identify groups that are more influential than others given specific disease characteristics, which can guide containment and vaccination efforts.
has issue date
2020-04-03
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
43c1c036a0c58dfc3798b1b6cef702714cbdab0f
resource representing a document's title
Identifying highly influential travellers for spreading disease on a public transport system
resource representing a document's body
covid:43c1c036a0c58dfc3798b1b6cef702714cbdab0f#body_text
is
schema:about
of
named entity 'DISEASE SPREAD'
named entity 'SYDNEY'
named entity 'CONSIDER'
named entity 'INSTANCE'
named entity 'ONE MONTH'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 3
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software