AttributesValues
type
value
  • Imbalanced data analysis remains one of the critical challenges in machine learning. This work aims to adapt the concept of Dynamic Classifier Selection (dcs) to the pattern classification task with the skewed class distribution. Two methods, using the similarity (distance) to the reference instances and class imbalance ratio to select the most confident classifier for a given observation, have been proposed. Both approaches come in two modes, one based on the k-Nearest Oracles (knora) and the other also considering those cases where the classifier makes a mistake. The proposed methods were evaluated based on computer experiments carried out on [Image: see text] datasets with a high imbalance ratio. The obtained results and statistical analysis confirm the usefulness of the proposed solutions.
Subject
  • Learning
  • Data analysis
  • Statistics
  • Data
  • Information
  • Research methods
  • Machine learning
  • Computational fields of study
  • Classification algorithms
  • Cybernetics
  • Mathematical and quantitative methods (economics)
  • Scientific method
  • Statistical classification
  • Formal sciences
  • Arab inventions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software