value
| - Temporal inference from laboratory testing results and their triangulation with clinical outcomes as described in the associated unstructured text from the providers notes in the Electronic Health Record (EHR) is integral to advancing precision medicine. Here, we studied 181 COVIDpos and 7,775 COVIDneg patients subjected to 1.3 million laboratory tests across 194 assays during a two-month observation period centered around their SARS-CoV-2 PCR testing dates. We found that compared to COVIDneg at the time of clinical presentation and diagnostic testing, COVIDpos patients tended to have higher plasma fibrinogen levels and similarly low platelet counts, with approximately 25% of patients in both cohorts showing outright thrombocytopenia. However, these measures show opposite longitudinal trends as the infection evolves, with declining fibrinogen and increasing platelet counts to levels that are lower and higher compared to the COVIDneg cohort, respectively. Our EHR augmented curation efforts suggest a minority of patients develop thromboembolic events after the PCR testing date, including rare cases with disseminated intravascular coagulopathy (DIC), with most patients lacking the platelet reductions typically observed in consumptive coagulopathies. These temporal trends present, for the first time, fine-grained resolution of COVID-19 associated coagulopathy (CAC), via a digital framework that synthesizes longitudinal lab measurements with structured medication data and neural network-powered extraction of outcomes from the unstructured EHR. This study demonstrates how a precision medicine platform can help contextualize each patients specific coagulation profile over time, towards the goal of informing better personalization of thromboprophylaxis regimen.
|