About: Abstract Porcine epidemic diarrhea virus (PEDV) is a member of the Alphacoronaviridae genus within the Coronaviridae family. It is the causative agent of porcine epidemic diarrhea, a disease that can have mortality rates as high as 100% in suckling piglets. PEDV causes severe economic loss, and has been in existence for decades. A panzootic starting in 2010 renewed interest in the development of a universal vaccine toward PEDV. This report details several design changes made to a Hepatitis B virus core antigen (HBcAg)-based recombinant vaccine strategy, and their effect in vivo. Initially, several multi-antigen vaccine candidates were able to elicit antibodies specific to three out of four B-cell epitopes inserted into the chimeric proteins. However, a lack of virus neutralization led to a redesign of the vaccines. The focus of the newly redesigned vaccines was to elicit a strong immune response to the YSNIGVCK amino acid motif from PEDV. Genetically modified new vaccine candidates were able to elicit a strong antibody (Ab) response to the YSNIGVCK epitope, which correlated with an increased ability to neutralize the CO strain of PEDV. Additionally, the location of the inserted PEDV epitopes within the vector protein was shown to affect the immune recognition toward the native HBcAg during vaccination.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Porcine epidemic diarrhea virus (PEDV) is a member of the Alphacoronaviridae genus within the Coronaviridae family. It is the causative agent of porcine epidemic diarrhea, a disease that can have mortality rates as high as 100% in suckling piglets. PEDV causes severe economic loss, and has been in existence for decades. A panzootic starting in 2010 renewed interest in the development of a universal vaccine toward PEDV. This report details several design changes made to a Hepatitis B virus core antigen (HBcAg)-based recombinant vaccine strategy, and their effect in vivo. Initially, several multi-antigen vaccine candidates were able to elicit antibodies specific to three out of four B-cell epitopes inserted into the chimeric proteins. However, a lack of virus neutralization led to a redesign of the vaccines. The focus of the newly redesigned vaccines was to elicit a strong immune response to the YSNIGVCK amino acid motif from PEDV. Genetically modified new vaccine candidates were able to elicit a strong antibody (Ab) response to the YSNIGVCK epitope, which correlated with an increased ability to neutralize the CO strain of PEDV. Additionally, the location of the inserted PEDV epitopes within the vector protein was shown to affect the immune recognition toward the native HBcAg during vaccination.
subject
  • Virology
  • Vaccination
  • Alphacoronaviruses
  • Feces
  • Swine diseases
  • »more»
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software