About: Neprilysin (NEP) is a neutral endopeptidase with diverse physiological roles in the body. NEP's role in degradation of diverse classes of peptides such as amyloid beta, natriuretic peptide, substance P, angiotensin, endothelins, etc., is associated with pathologies of alzheimer's, kidney and heart disease, obesity, diabetes, and certain malignancies. Hence the functional inhibition of NEP in the above systems can be a good therapeutic target. In the present study, in-silico drug repurposing approach was used to identify NEP inhibitors. Molecular docking was carried out using GLIDE tool and 2934 drugs from the ZINC12 database were screened using high throughput virtual screening (HTVS) followed by standard precision (SP), and extra precision (XP) docking. Based on the XP docking score and ligand interaction, the top 8 hits were subjected to free ligand binding energy calculation, to filter out 4 hits (ZINC000000001427, ZINC000001533877, ZINC000000601283, and ZINC000003831594). Further, induced fit docking-standard precision (IFD-SP) and molecular dynamics (MD) studies were performed. The results obtained from MD +studies suggest that ZINC000000601283-NEP and ZINC000003831594-NEP complexes were most stable for 20ns simulation period as compared to ZINC000001533877-NEP and ZINC000000001427-NEP complexes. Interestingly, ZINC000000601283 and ZINC000003831594 showed similarity in binding with reported NEP inhibitor sacubitrilat. Findings from this study suggest that ZINC000000601283 and ZINC000003831594 may act as NEP inhibitors. In future studies, the role of ZINC000000601283 and ZINC000003831594 in NEP inhibition should be tested in biological systems to evaluate therapeutic effect in NEP associated pathological conditions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Neprilysin (NEP) is a neutral endopeptidase with diverse physiological roles in the body. NEP's role in degradation of diverse classes of peptides such as amyloid beta, natriuretic peptide, substance P, angiotensin, endothelins, etc., is associated with pathologies of alzheimer's, kidney and heart disease, obesity, diabetes, and certain malignancies. Hence the functional inhibition of NEP in the above systems can be a good therapeutic target. In the present study, in-silico drug repurposing approach was used to identify NEP inhibitors. Molecular docking was carried out using GLIDE tool and 2934 drugs from the ZINC12 database were screened using high throughput virtual screening (HTVS) followed by standard precision (SP), and extra precision (XP) docking. Based on the XP docking score and ligand interaction, the top 8 hits were subjected to free ligand binding energy calculation, to filter out 4 hits (ZINC000000001427, ZINC000001533877, ZINC000000601283, and ZINC000003831594). Further, induced fit docking-standard precision (IFD-SP) and molecular dynamics (MD) studies were performed. The results obtained from MD +studies suggest that ZINC000000601283-NEP and ZINC000003831594-NEP complexes were most stable for 20ns simulation period as compared to ZINC000001533877-NEP and ZINC000000001427-NEP complexes. Interestingly, ZINC000000601283 and ZINC000003831594 showed similarity in binding with reported NEP inhibitor sacubitrilat. Findings from this study suggest that ZINC000000601283 and ZINC000003831594 may act as NEP inhibitors. In future studies, the role of ZINC000000601283 and ZINC000003831594 in NEP inhibition should be tested in biological systems to evaluate therapeutic effect in NEP associated pathological conditions.
Subject
  • Drug discovery
  • Protein structure
  • 1906 establishments in the United States
  • American medical research
  • Biological databases
  • Binding energy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software