AttributesValues
type
value
  • Abstract Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which involves a complex interaction between immune system and neural cells. Animal modeling has been critical for addressing MS pathogenesis. The three most characterized animal models of MS are (1) the experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally-induced chronic demyelinating disease, known as Theiler׳s murine encephalomyelitis virus (TMEV) infection and (3) the toxin-induced demyelination. All these models, in a complementary way, have allowed to reach a good knowledge of the pathogenesis of MS. Specifically, EAE is the model which better reflects the autoimmune pathogenesis of MS and is extremely useful to study potential experimental treatments. Furthermore, both TMEV and toxin-induced demyelination models are suitable for characterizing the role of the axonal injury/repair and the remyelination process in MS. In conclusion, animal models, despite their limitations, remain the most useful instrument for implementing the study of MS.
subject
  • Virology
  • Multiple sclerosis
  • Cardioviruses
  • Epstein–Barr virus-associated diseases
  • Ailments of unknown cause
  • Immune system disorders
  • RTT(full)
  • RTTNEURO
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software