About: Urbanization can have profound effects on the plant communities persisting in remnant habitats. That process can be explored by examining patterns of nestedness. Species composition for a set of communities exhibits a nested pattern if species present in progressively richer assemblages form a series of subsets. Nestedness can form as a result of the dynamic processes of extinction or colonization. It can also reflect a nested distribution of habitats among the sites or the differential abundance properties of species through passive sampling. This study investigated whether Sonoran Desert woody vegetation in remnant islands within metropolitan Phoenix is nested and explored which mechanisms are responsible for the pattern. It also examined whether vegetation is nested in similar habitat types across islands, and how species abundance relates to the nested pattern and hypothesized mechanisms. All data sets were significantly nested, indicating a nested pattern at the island and habitat levels. Community‐level analyses did not indicate a primary mechanism leading to the nested pattern. Among species with abundances correlated with the nested rank‐order of sites, abundance properties were significantly related to different variables. This suggests that individual taxa respond to divergent ecological mechanisms, leading to nestedness. Thus, nestedness in plant communities can result from a complex set of contributors and may not be attributable to a single factor.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Urbanization can have profound effects on the plant communities persisting in remnant habitats. That process can be explored by examining patterns of nestedness. Species composition for a set of communities exhibits a nested pattern if species present in progressively richer assemblages form a series of subsets. Nestedness can form as a result of the dynamic processes of extinction or colonization. It can also reflect a nested distribution of habitats among the sites or the differential abundance properties of species through passive sampling. This study investigated whether Sonoran Desert woody vegetation in remnant islands within metropolitan Phoenix is nested and explored which mechanisms are responsible for the pattern. It also examined whether vegetation is nested in similar habitat types across islands, and how species abundance relates to the nested pattern and hypothesized mechanisms. All data sets were significantly nested, indicating a nested pattern at the island and habitat levels. Community‐level analyses did not indicate a primary mechanism leading to the nested pattern. Among species with abundances correlated with the nested rank‐order of sites, abundance properties were significantly related to different variables. This suggests that individual taxa respond to divergent ecological mechanisms, leading to nestedness. Thus, nestedness in plant communities can result from a complex set of contributors and may not be attributable to a single factor.
subject
  • Habitats
  • Conservation biology
  • Systems ecology
  • Physiographic regions of the United States
  • Deserts of California
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software