AttributesValues
type
value
  • Attenuated, live viral vaccines have been extraordinarily successful in protecting against many diseases. The main drawbacks in their development and use have been reliance on an unpredictable method of attenuation and the potential for evolutionary reversion to high virulence. Methods of genetic engineering now provide many safer alternatives to live vaccines, so if live vaccines are to compete with these alternatives in the future, they must either have superior immunogenicity or they must be able to overcome these former disadvantages. Several live vaccine designs that were historically inaccessible are now feasible because of advances in genome synthesis. Some of those methods are addressed here, with an emphasis on whether they enable predictable levels of attenuation and whether they are stable against evolutionary reversion. These new designs overcome many of the former drawbacks and position live vaccines to be competitive with alternatives. Not only do new methods appear to retard evolutionary reversion enough to prevent vaccine-derived epidemics, but it may even be possible to permanently attenuate live vaccines that are transmissible but cannot evolve to higher virulence under prolonged adaptation.
subject
  • Virology
  • Vaccination
  • Acoustics
  • Biological engineering
  • Live vaccines
  • Telecommunications engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software