About: Hierarchical models describe phenomena by grouping data into multiple levels. Due to the size of these models, parallel execution is required to avoid prohibitively long computing time. While it is occasionally possible to specify some of these models using parallel building blocks, this limits expressivity. Therefore, a more general generative specification is preferred. To leverage parallel computing capacity, these specifications can be annotated, but doing so effectively assumes that the modeler has expertise from computer science. This paper outlines how to identify parallel parts automatically by leveraging the conditional independence property in the graphical model extracted from the dataflow graph of model specifications. Computation related to random variables with the same depth in the graphical model are identified as candidates for parallel execution. Since subsequent proposals in the parameter space exploration of the model are clustered together, the results show that the well known longest processing time scheduling heuristic deals adequately with load imbalance. The proposed parallelization is evaluated on two pharmacometrics models, a domain where hierarchical models with load imbalance are common due to the numeric simulation of pharmacokinetics and pharmacodynamics of human subjects. The varying number of measurements taken per subject further exacerbates load imbalance.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Hierarchical models describe phenomena by grouping data into multiple levels. Due to the size of these models, parallel execution is required to avoid prohibitively long computing time. While it is occasionally possible to specify some of these models using parallel building blocks, this limits expressivity. Therefore, a more general generative specification is preferred. To leverage parallel computing capacity, these specifications can be annotated, but doing so effectively assumes that the modeler has expertise from computer science. This paper outlines how to identify parallel parts automatically by leveraging the conditional independence property in the graphical model extracted from the dataflow graph of model specifications. Computation related to random variables with the same depth in the graphical model are identified as candidates for parallel execution. Since subsequent proposals in the parameter space exploration of the model are clustered together, the results show that the well known longest processing time scheduling heuristic deals adequately with load imbalance. The proposed parallelization is evaluated on two pharmacometrics models, a domain where hierarchical models with load imbalance are common due to the numeric simulation of pharmacokinetics and pharmacodynamics of human subjects. The varying number of measurements taken per subject further exacerbates load imbalance.
Subject
  • Parallel computing
  • Clinical research
  • Problem solving methods
  • Graphical models
  • Concurrent computing
  • Distributed computing
  • Servers (computing)
  • Load balancing
  • Routing
  • Network management
  • Balancing technology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software