AttributesValues
type
value
  • In recent years, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). The integration of isothermal amplification with electrical or electrochemical devices has enabled high-throughput nucleic acid-based assays with high sensitivity. We performed solid-phase rolling circle amplification (RCA) on the surface of a Au electrode, and detected RCA products in situ using chronocoulometry (CC) with [Ru (NH(3))(6)](3+) as the signaling molecule. Detection sensitivity for DNA and a microRNA (miR-143) was 100 fM and 1 pM, respectively. Furthermore, we conducted potentiometric DNA detection using an ethidium ion (Et(+))-selective electrode (Et(+)ISE) for real-time monitoring of isothermal DNA amplification by primer-generation RCA (PG-RCA). The Et(+)ISE potential enabled real-time monitoring of the PG-RCA reaction in the range of 10 nM–1 μM of initial target DNA. Devices based on these electrochemical techniques represent a new strategy for replacing conventional PCR for on-site detection of nucleic acids of viruses or microorganisms.
Subject
  • Virology
  • Physical chemistry
  • Phases of matter
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software