About: The corona virus is already spread around the world in many countries, and it has taken many lives. Furthermore, the world health organization (WHO) has announced that COVID-19 has reached the global epidemic stage. Early and reliable diagnosis using chest CT-scan can assist medical specialists in vital circumstances. In this work, we introduce a computer aided diagnosis (CAD) web service to detect COVID- 19 online. One of the largest public chest CT-scan databases, containing 746 participants was used in this experiment. A number of well-known deep neural network architectures consisting of ResNet, Inception and MobileNet were inspected to find the most efficient model for the hybrid system. A combination of the Densely connected convolutional network (DenseNet) in order to reduce image dimensions and Nu-SVM as an anti-overfitting bottleneck was chosen to distinguish between COVID-19 and healthy controls. The proposed methodology achieved 90.80% recall, 89.76% precision and 90.61% accuracy. The method also yields an AUC of 95.05%. Ultimately a flask web service is made public through ngrok using the trained models to provide a RESTful COVID-19 detector, which takes only 39 milliseconds to process one image. The source code is also available at https://github.com/KiLJ4EdeN/COVID_WEB. Based on the findings, it can be inferred that it is feasible to use the proposed technique as an automated tool for diagnosis of COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The corona virus is already spread around the world in many countries, and it has taken many lives. Furthermore, the world health organization (WHO) has announced that COVID-19 has reached the global epidemic stage. Early and reliable diagnosis using chest CT-scan can assist medical specialists in vital circumstances. In this work, we introduce a computer aided diagnosis (CAD) web service to detect COVID- 19 online. One of the largest public chest CT-scan databases, containing 746 participants was used in this experiment. A number of well-known deep neural network architectures consisting of ResNet, Inception and MobileNet were inspected to find the most efficient model for the hybrid system. A combination of the Densely connected convolutional network (DenseNet) in order to reduce image dimensions and Nu-SVM as an anti-overfitting bottleneck was chosen to distinguish between COVID-19 and healthy controls. The proposed methodology achieved 90.80% recall, 89.76% precision and 90.61% accuracy. The method also yields an AUC of 95.05%. Ultimately a flask web service is made public through ngrok using the trained models to provide a RESTful COVID-19 detector, which takes only 39 milliseconds to process one image. The source code is also available at https://github.com/KiLJ4EdeN/COVID_WEB. Based on the findings, it can be inferred that it is feasible to use the proposed technique as an automated tool for diagnosis of COVID-19.
subject
  • Virology
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Computer-aided design
  • Occupational safety and health
  • Software architecture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software