About: Precise dating of viral subtype divergence enables researchers to correlate divergence with geographic and demographic occurrences. When historical data are absent (that is, the overwhelming majority), viral sequence sampling on a time scale commensurate with the rate of substitution permits the inference of the times of subtype divergence. Currently, researchers use two strategies to approach this task, both requiring strong conditions on the molecular clock assumption of substitution rate. As the underlying structure of the substitution rate process at the time of subtype divergence is not understood and likely highly variable, we present a simple method that estimates rates of substitution, and from there, times of divergence, without use of an assumed molecular clock. We accomplish this by blending estimates of the substitution rate for triplets of dated sequences where each sequence draws from a distinct viral subtype, providing a zeroth-order approximation for the rate between subtypes. As an example, we calculate the time of divergence for three genes among influenza subtypes A-H3N2 and B using subtype C as an outgroup. We show a time of divergence approximately 100 years ago, substantially more recent than previous estimates which range from 250 to 3800 years ago.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Precise dating of viral subtype divergence enables researchers to correlate divergence with geographic and demographic occurrences. When historical data are absent (that is, the overwhelming majority), viral sequence sampling on a time scale commensurate with the rate of substitution permits the inference of the times of subtype divergence. Currently, researchers use two strategies to approach this task, both requiring strong conditions on the molecular clock assumption of substitution rate. As the underlying structure of the substitution rate process at the time of subtype divergence is not understood and likely highly variable, we present a simple method that estimates rates of substitution, and from there, times of divergence, without use of an assumed molecular clock. We accomplish this by blending estimates of the substitution rate for triplets of dated sequences where each sequence draws from a distinct viral subtype, providing a zeroth-order approximation for the rate between subtypes. As an example, we calculate the time of divergence for three genes among influenza subtypes A-H3N2 and B using subtype C as an outgroup. We show a time of divergence approximately 100 years ago, substantially more recent than previous estimates which range from 250 to 3800 years ago.
Subject
  • Influenza
  • Epidemiology
  • Phylogenetics
  • Vaccine-preventable diseases
  • Molecular evolution
  • Animal viral diseases
  • Environmental social science
  • Healthcare-associated infections
  • Molecular genetics
  • RTT
  • RTTEM
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software