About: Abstract Spatial heterogeneity and long-distance translocation (LDT) play important roles in the spatio-temporal dynamics and management of emerging infectious diseases and invasive species. We assessed the influence of LDT events on the invasive spread of raccoon rabies through Connecticut. We identified several putative LDT events, and developed a network-model to evaluate whether they became new foci for epidemic spread. LDT was fairly common, but many of the LDTs were isolated events that did not spread. Two putative LDT events did appear to become nascent foci that affected the epidemic in surrounding townships. In evaluating the role of LDT, we simultaneously revisited the problem of spatial heterogeneity. The spread of raccoon rabies is associated with forest cover—rabies moves up to three-times slower through the most heavily forested townships compared with those with less forestation. Forestation also modified the effect of rivers. In the best overall model, rabies did not cross the river separating townships that were heavily forested, and the spread slowed substantially between townships that were lightly forested. Our results suggest that spatial heterogeneity can be used to enhance the effects of rabies control by focusing vaccine bait distribution along rivers in lightly forested areas. LDT events are a concern, but this analysis suggests that at a local scale they can be isolated and managed.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Spatial heterogeneity and long-distance translocation (LDT) play important roles in the spatio-temporal dynamics and management of emerging infectious diseases and invasive species. We assessed the influence of LDT events on the invasive spread of raccoon rabies through Connecticut. We identified several putative LDT events, and developed a network-model to evaluate whether they became new foci for epidemic spread. LDT was fairly common, but many of the LDTs were isolated events that did not spread. Two putative LDT events did appear to become nascent foci that affected the epidemic in surrounding townships. In evaluating the role of LDT, we simultaneously revisited the problem of spatial heterogeneity. The spread of raccoon rabies is associated with forest cover—rabies moves up to three-times slower through the most heavily forested townships compared with those with less forestation. Forestation also modified the effect of rivers. In the best overall model, rabies did not cross the river separating townships that were heavily forested, and the spread slowed substantially between townships that were lightly forested. Our results suggest that spatial heterogeneity can be used to enhance the effects of rabies control by focusing vaccine bait distribution along rivers in lightly forested areas. LDT events are a concern, but this analysis suggests that at a local scale they can be isolated and managed.
subject
  • New England
  • Dog diseases
  • Scientific modeling
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software