About: Abstract This study theoretically investigated detachment of homoaggregates and heteroaggregates attached on the planar surfaces at primary minima during transients in solution chemistry. The homoaggregates were represented as small colloidal clusters with well-defined structures or as clusters generated by randomly packing spheres using Monte Carlo method. The heteroaggregates were modeled as microparticles coated with nanoparticles. Surface element integration technique was adopted to calculate Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energies for the homoaggregates and heteroaggregates at different ionic strengths. Results show that attached homoaggregates on the planar surface at primary minima are irreversible to reduction in solution ionic strength whether the primary spheres of the homoaggregates are nano- or micro-sized. Heteroaggregation of nanoparticles with a microparticle can cause DLVO interaction energy to decrease monotonically with separation distance at low ionic strengths (e.g., ⩽0.01M), indicating that the heteroaggregates experience repulsive forces at all separation distances. Therefore, attachment of the heteroaggregates at primary minima can be detached upon reduction in ionic strength. Additionally, we showed that the adhesive forces and torques that the aforementioned heteroaggregates experience can be significantly smaller than those experienced by the microspheres without attaching nanoparticles, thus, the heteroaggregates are readily detached via hydrodynamic drag. Results of study provide plausible explanation for the observations in the literature that attached/aggregated particles can be detached/redispersed from primary minima upon reduction in ionic strength, which challenges the common belief that attachment/aggregation of particles in primary minima is chemically irreversible.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract This study theoretically investigated detachment of homoaggregates and heteroaggregates attached on the planar surfaces at primary minima during transients in solution chemistry. The homoaggregates were represented as small colloidal clusters with well-defined structures or as clusters generated by randomly packing spheres using Monte Carlo method. The heteroaggregates were modeled as microparticles coated with nanoparticles. Surface element integration technique was adopted to calculate Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energies for the homoaggregates and heteroaggregates at different ionic strengths. Results show that attached homoaggregates on the planar surface at primary minima are irreversible to reduction in solution ionic strength whether the primary spheres of the homoaggregates are nano- or micro-sized. Heteroaggregation of nanoparticles with a microparticle can cause DLVO interaction energy to decrease monotonically with separation distance at low ionic strengths (e.g., ⩽0.01M), indicating that the heteroaggregates experience repulsive forces at all separation distances. Therefore, attachment of the heteroaggregates at primary minima can be detached upon reduction in ionic strength. Additionally, we showed that the adhesive forces and torques that the aforementioned heteroaggregates experience can be significantly smaller than those experienced by the microspheres without attaching nanoparticles, thus, the heteroaggregates are readily detached via hydrodynamic drag. Results of study provide plausible explanation for the observations in the literature that attached/aggregated particles can be detached/redispersed from primary minima upon reduction in ionic strength, which challenges the common belief that attachment/aggregation of particles in primary minima is chemically irreversible.
Subject
  • Colloidal chemistry
  • Mathematical concepts
  • Physical chemistry
  • Dosage forms
  • Order theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software