About: Abstract Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process. Currently, there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods (PPRPH). In this study, we evaluated the effect of vaporized hydrogen peroxide (VHP) on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment, especially protective equipment with an electric supply system. A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment, and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber. The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow (the amount of VHP) and disinfection was investigated. Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure. No surviving Geobacillus stearothermophilus ATCC 7953, both inside and outside of these disinfected PPRPHs, could be observed after a 60 min treatment with an air flow of 10.5–12.3 m3/h. Both function and material physical properties of these PPRPHs met the working requirements after disinfection. This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP. The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m3/h, and provides a potential solution for the disinfection of various kind of protective equipment.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process. Currently, there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods (PPRPH). In this study, we evaluated the effect of vaporized hydrogen peroxide (VHP) on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment, especially protective equipment with an electric supply system. A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment, and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber. The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow (the amount of VHP) and disinfection was investigated. Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure. No surviving Geobacillus stearothermophilus ATCC 7953, both inside and outside of these disinfected PPRPHs, could be observed after a 60 min treatment with an air flow of 10.5–12.3 m3/h. Both function and material physical properties of these PPRPHs met the working requirements after disinfection. This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP. The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m3/h, and provides a potential solution for the disinfection of various kind of protective equipment.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software