AttributesValues
type
value
  • The explosion of disinformation related to the COVID-19 pandemic has overloaded fact-checkers and media worldwide. To help tackle this, we developed computational methods to support COVID-19 disinformation debunking and social impacts research. This paper presents: 1) the currently largest available manually annotated COVID-19 disinformation category dataset; and 2) a classification-aware neural topic model (CANTM) that combines classification and topic modelling under a variational autoencoder framework. We demonstrate that CANTM efficiently improves classification performance with low resources, and is scalable. In addition, the classification-aware topics help researchers and end-users to better understand the classification results.
Subject
  • Psychopathy
  • Software quality
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software