About: The presence and nature of interpeptide disulfide bonds in HANA (Aemagglutinin and neura-minidase) glycoprotein and F (fusion) glycoprotein of HVJ (Sendai virus) are described. In the case of HANA, subunits of the same or very similar molecular weight were inter connected with a disulfide bond(s). Cleavage of the bond(s) can easily be achieved by the addition of 1 mM dithiothreitol with concomitant loss of the biological activities of the glyco-protein. After splitting of the interconnecting bonds, all the HANA protein subunits remained bound on the viral membrane. To observe the cleavage of the interpeptide disulfide bond between the F(1) and F(2) subunits of F glycoprotein, higher concentrations of sulfhydryl compounds were required than were necessary for HANA protein. Splitting of the disulfide bond under either denaturing or non-denaturing conditions failed to release both segments of F protein from the virion. Therefore, F glycoprotein seems to have at least two membrane binding sites, one on F(1) and the other on F(2). On the other hand, the disulfide bond which connects the HA(1) and HA(2) subunits of influenza virus is hardly cleaved under non-denaturing conditions. Addition of 8 M urea or 6 M guanidine HCl, which completely inactivates HA activity, was necessary for the splitting of this disulfide bond by thiol compounds. Interestingly, the HA(1) submit was released from the virion after the cleavage. Thus, unlike F(1) and F(2) of HVJ, the HA(1) subunit seems to have no hydrophobic binding site to the membrane. A model for the arrangement of these subunits on the viral membrane is proposed.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The presence and nature of interpeptide disulfide bonds in HANA (Aemagglutinin and neura-minidase) glycoprotein and F (fusion) glycoprotein of HVJ (Sendai virus) are described. In the case of HANA, subunits of the same or very similar molecular weight were inter connected with a disulfide bond(s). Cleavage of the bond(s) can easily be achieved by the addition of 1 mM dithiothreitol with concomitant loss of the biological activities of the glyco-protein. After splitting of the interconnecting bonds, all the HANA protein subunits remained bound on the viral membrane. To observe the cleavage of the interpeptide disulfide bond between the F(1) and F(2) subunits of F glycoprotein, higher concentrations of sulfhydryl compounds were required than were necessary for HANA protein. Splitting of the disulfide bond under either denaturing or non-denaturing conditions failed to release both segments of F protein from the virion. Therefore, F glycoprotein seems to have at least two membrane binding sites, one on F(1) and the other on F(2). On the other hand, the disulfide bond which connects the HA(1) and HA(2) subunits of influenza virus is hardly cleaved under non-denaturing conditions. Addition of 8 M urea or 6 M guanidine HCl, which completely inactivates HA activity, was necessary for the splitting of this disulfide bond by thiol compounds. Interestingly, the HA(1) submit was released from the virion after the cleavage. Thus, unlike F(1) and F(2) of HVJ, the HA(1) subunit seems to have no hydrophobic binding site to the membrane. A model for the arrangement of these subunits on the viral membrane is proposed.
Subject
  • Sulfur
  • Glycobiology
  • Viral respiratory tract infections
  • Animal virology
  • Paramyxoviridae
  • Glycoproteins
  • Carbohydrate chemistry
  • Rodent diseases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software