About: Intelligent Internet-of-Things (IoT) will be transformative with the advancement of artificial intelligence and high-dimensional data analysis, shifting from%22connected things%22to%22connected intelligence%22. This shall unleash the full potential of intelligent IoT in a plethora of exciting applications, such as self-driving cars, unmanned aerial vehicles, healthcare, robotics, and supply chain finance. These applications drive the need of developing revolutionary computation, communication and artificial intelligence technologies that can make low-latency decisions with massive real-time data. To this end, federated machine learning, as a disruptive technology, is emerged to distill intelligence from the data at network edge, while guaranteeing device privacy and data security. However, the limited communication bandwidth is a key bottleneck of model aggregation for federated machine learning over radio channels. In this article, we shall develop an over-the-air computation based communication-efficient federated machine learning framework for intelligent IoT networks via exploiting the waveform superposition property of a multi-access channel. Reconfigurable intelligent surface is further leveraged to reduce the model aggregation error via enhancing the signal strength by reconfiguring the wireless propagation environments.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Intelligent Internet-of-Things (IoT) will be transformative with the advancement of artificial intelligence and high-dimensional data analysis, shifting from%22connected things%22to%22connected intelligence%22. This shall unleash the full potential of intelligent IoT in a plethora of exciting applications, such as self-driving cars, unmanned aerial vehicles, healthcare, robotics, and supply chain finance. These applications drive the need of developing revolutionary computation, communication and artificial intelligence technologies that can make low-latency decisions with massive real-time data. To this end, federated machine learning, as a disruptive technology, is emerged to distill intelligence from the data at network edge, while guaranteeing device privacy and data security. However, the limited communication bandwidth is a key bottleneck of model aggregation for federated machine learning over radio channels. In this article, we shall develop an over-the-air computation based communication-efficient federated machine learning framework for intelligent IoT networks via exploiting the waveform superposition property of a multi-access channel. Reconfigurable intelligent surface is further leveraged to reduce the model aggregation error via enhancing the signal strength by reconfiguring the wireless propagation environments.
Subject
  • Emerging technologies
  • Digital technology
  • Embedded systems
  • Telecommunication theory
  • Technology assessment
  • Ambient intelligence
  • Internet of things
  • 21st-century inventions
  • Computing and society
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software